Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

Spray and Combustion Characteristics of n-Butanol in a Constant Volume Combustion Chamber at Different Oxygen Concentrations

2011-04-12
2011-01-1190
A very competitive alcohol for use in diesel engines is butanol. Butanol is of particular interest as a renewable bio-fuel, as it is less hydrophilic and it possesses higher heating value, higher cetane number, lower vapor pressure, and higher miscibility than ethanol or methanol. These properties make butanol preferable to ethanol or methanol for blending with conventional diesel or gasoline fuel. In this paper, the spray and combustion characteristics of pure n-butanol fuel was experimentally investigated in a constant volume combustion chamber. The ambient temperatures were set to 1000 K, and three different oxygen concentrations were set to 21%, 16%, and 10.5%. The results indicate that the penetration length reduces with the increase of ambient oxygen concentration. The combustion pressure and heat release rate demonstrate the auto-ignition delay becomes longer with decreasing of oxygen concentrations.
Technical Paper

Effects of Injection Pressure on Low-sooting Combustion in an Optical HSDI Diesel Engine Using a Narrow Angle Injector

2010-04-12
2010-01-0339
An optically accessible single-cylinder high-speed direct-injection (HSDI) diesel engine equipped with a Bosch common rail injection system was used to study effects of injection pressures on the in-cylinder spray and combustion processes. An injector with an injection angle of 70 degrees and European low sulfur diesel fuel (cetane number 54) were used in the work. The operating load was 2.0 bar IMEP with no EGR added in the intake. The in-cylinder pressure was measured and the heat release rate was calculated. High-speed Mie-scattering technique was employed to visualize the liquid distribution and evolution. High-speed combustion video was also captured for all the studied cases using the same frame rate. NOx emissions were measured in the exhaust pipe. The experimental results indicated that for all of the conditions the heat release rate was dominated by a premixed combustion pattern. Two-stage low temperature reaction was seen for early injection timings.
Technical Paper

Modeling of Spray Vaporization and Air-Fuel Mixing in Gasoline Direct-Injection Engines

2000-03-06
2000-01-0537
A numerical investigation of air-fuel mixing in gasoline direct-injection (GDI) engines is presented in this paper. The primary goal of this study is to demonstrate the importance of fuel representation. In the past studies, fuel has been usually modeled as a single component substance. However, most fuels are mixtures of hydrocarbons with diverse boiling points, resulting in mixture vaporization behavior substantially different from single-component behavior. This study presents a newly developed multicomponent vaporization model, which takes into account important mechanisms such as preferential vaporization, internal circulation, surface regression, and non-ideal behavior in high-pressure environments. A sheet spray atomization model was also used to calculate the disintegration of the liquid sheet and the breakup of the subsequent droplets. The results of a single-component fuel representation and a multicomponent fuel representation were compared.
X